84 research outputs found

    Short-term stability in refractive status despite large fluctuations in glucose levels in diabetes mellitus type 1 and 2

    Get PDF
    Purpose: This work investigates how short-term changes in blood glucose concentration affect the refractive components of the diabetic eye in patients with long-term Type 1 and Type 2 diabetes. Methods: Blood glucose concentration, refractive error components (mean spherical equivalent MSE, J0, J45), central corneal thickness (CCT), anterior chamber depth (ACD), crystalline lens thickness (LT), axial length (AL) and ocular aberrations were monitored at two-hourly intervals over a 12-hour period in: 20 T1DM patients (mean age ± SD) 38±14 years, baseline HbA1c 8.6±1.9%; 21 T2DM patients (mean age ± SD) 56±11 years, HbA1c 7.5±1.8%; and in 20 control subjects (mean age ± SD) 49±23 years, HbA1c 5.5±0.5%. The refractive and biometric results were compared with the corresponding changes in blood glucose concentration. Results: Blood glucose concentration at different times was found to vary significantly within (p0.05). Minor changes of marginal statistical or optical significance were observed in some biometric parameters. Similarly there were some marginally significant differences between the baseline biometric parameters of well-controlled and poorly-controlled diabetic subjects. Conclusion: This work suggests that normal, short-term fluctuations (of up to about 6 mM/l on a timescale of a few hours) in the blood glucose levels of diabetics are not usually associated with acute changes in refractive error or ocular wavefront aberrations. It is therefore possible that factors other than refractive error fluctuations are sometimes responsible for the transient visual problems often reported by diabetic patients

    Semi-supervised segmentation of ultrasound images based on patch representation and continuous min cut.

    Get PDF
    Ultrasound segmentation is a challenging problem due to the inherent speckle and some artifacts like shadows, attenuation and signal dropout. Existing methods need to include strong priors like shape priors or analytical intensity models to succeed in the segmentation. However, such priors tend to limit these methods to a specific target or imaging settings, and they are not always applicable to pathological cases. This work introduces a semi-supervised segmentation framework for ultrasound imaging that alleviates the limitation of fully automatic segmentation, that is, it is applicable to any kind of target and imaging settings. Our methodology uses a graph of image patches to represent the ultrasound image and user-assisted initialization with labels, which acts as soft priors. The segmentation problem is formulated as a continuous minimum cut problem and solved with an efficient optimization algorithm. We validate our segmentation framework on clinical ultrasound imaging (prostate, fetus, and tumors of the liver and eye). We obtain high similarity agreement with the ground truth provided by medical expert delineations in all applications (94% DICE values in average) and the proposed algorithm performs favorably with the literature

    The Effect of Axial Length on the Thickness of Intraretinal Layers of the Macula.

    Get PDF
    PURPOSE: The aim of this study was to evaluate the effect of axial length (AL) on the thickness of intraretinal layers in the macula using optical coherence tomography (OCT) image analysis. METHODS: Fifty three randomly selected eyes of 53 healthy subjects were recruited for this study. The median age of the participants was 29 years (range: 6 to 67 years). AL was measured for each eye using a Lenstar LS 900 device. OCT imaging of the macula was also performed by Stratus OCT. OCTRIMA software was used to process the raw OCT scans and to determine the weighted mean thickness of 6 intraretinal layers and the total retina. Partial correlation test was performed to assess the correlation between the AL and the thickness values. RESULTS: Total retinal thickness showed moderate negative correlation with AL (r = -0.378, p = 0.0007), while no correlation was observed between the thickness of the retinal nerve fiber layer (RNFL), ganglion cell layer (GCC), retinal pigment epithelium (RPE) and AL. Moderate negative correlation was observed also between the thickness of the ganglion cell layer and inner plexiform layer complex (GCL+IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL) and AL which were more pronounced in the peripheral ring (r = -0.402, p = 0.004; r = -0.429, p = 0.002; r = -0.360, p = 0.01; r = -0.448, p = 0.001). CONCLUSIONS: Our results have shown that the thickness of the nuclear layers and the total retina is correlated with AL. The reason underlying this could be the lateral stretching capability of these layers; however, further research is warranted to prove this theory. Our results suggest that the effect of AL on retinal layers should be taken into account in future studies

    Eye Size at Birth in Prosimian Primates: Life History Correlates and Growth Patterns

    Get PDF
    BACKGROUND: Primates have large eyes relative to head size, which profoundly influence the ontogenetic emergence of facial form. However, growth of the primate eye is only understood in a narrow taxonomic perspective, with information biased toward anthropoids.\ud \ud METHODOLOGY/PRINCIPAL FINDINGS: We measured eye and bony orbit size in perinatal prosimian primates (17 strepsirrhine taxa and Tarsius syrichta) to infer the extent of prenatal as compared to postnatal eye growth. In addition, multiple linear regression was used to detect relationships of relative eye and orbit diameter to life history variables. ANOVA was used to determine if eye size differed according to activity pattern. In most of the species, eye diameter at birth measures more than half of that for adults. Two exceptions include Nycticebus and Tarsius, in which more than half of eye diameter growth occurs postnatally. Ratios of neonate/adult eye and orbit diameters indicate prenatal growth of the eye is actually more rapid than that of the orbit. For example, mean neonatal transverse eye diameter is 57.5% of the adult value (excluding Nycticebus and Tarsius), compared to 50.8% for orbital diameter. If Nycticebus is excluded, relative gestation age has a significant positive correlation with relative eye diameter in strepsirrhines, explaining 59% of the variance in relative transverse eye diameter. No significant differences were found among species with different activity patterns.\ud \ud CONCLUSIONS/SIGNIFICANCE: The primate developmental strategy of relatively long gestations is probably tied to an extended period of neural development, and this principle appears to apply to eye growth as well. Our findings indicate that growth rates of the eye and bony orbit are disassociated, with eyes growing faster prenatally, and the growth rate of the bony orbit exceeding that of the eyes after birth. Some well-documented patterns of orbital morphology in adult primates, such as the enlarged orbits of nocturnal species, mainly emerge during postnatal development.\ud \u

    The Growth of the Eye from the Age of 10 to 18 Years

    No full text

    Myopia of Prematurity — Changes During Adolescence

    No full text
    corecore